Comparison of Network Heuristics for Understanding Small Groups in Synchronous Online Learning

ABSTRACT
Social network analysis metrics can provide information about group structures, based on information about relationships and activities between group participants, which in turn can provide information to tutors, computational agents and students. In the case of chat discussions, however, the relationship involved in a participant replying to another is not explicit. In this poster, we compare four preliminary heuristics for estimating a reply structure from which individual and group network measures can be derived. Simple participation measures prove remarkably effective and a coding framework based on Systemic Functional Linguistics is shown the most effective heuristic for individual measures ($r^2=0.96$).

Categories and Subject Descriptors
K1.1. [Computer Uses in Education]: Collaborative Learning

General Terms
Measurement, Human Factors.

Keywords
Chat discussion, network heuristics, SNA.

1. INTRODUCTION
Social Network Analysis has been shown to be useful in contributing to understanding online discussions in Computer Supported Collaborative Learning (CSCL) situations [1][4], even in the case of small groups [18]. The insights gleaned from such techniques can be used in contributing to analysis, or in real-time to provide monitoring to group, to a human tutor or to a computational agent which is involved in scaffolding the situation.

Online chat discussion logs are the empirical manifestation of the complex group dynamic that unfolds during the discussion. Their simple sequential structure does not explicitly provide the links necessary for network analysis techniques to be applied. By manually or automatically adding this structure, it is possible to construct networks of sufficient quality for identification of major features of a discussion and the roles of actors [31]. Some authors have suggested using interfaces with explicit reply or even forums to obtain these structures [14], but these can be unreliably used (e.g. [30]). Using quotes [27] has been shown to be more reliable than relying on the reply structure, as has overlap in content [32]. In the case of asynchronous discussion without explicit structure, Goggins [10] shows that by considering the number of previous posts visible to a user, and factoring in time between messages, it is possible to construct an appropriate implicit reply structure. In the case of synchronous chat discussion, positive results have been achieved, combining temporal proximity, turn proximity and direct addressing of users [26].

In using automated techniques to expose implicit reply structures, we do not assume that the resulting reply structure will be exactly correct, but there is evidence that automated analysis at a turn by turn level may capture enough of underlying interaction that higher level indicators (such as network measures) might be expected to be valid. For example, Mayfield & Rosé [22] have achieved 68% accuracy in automatically applying a framework based on systemic functional linguistics that codes for negotiation of information, which resulted in an r^2 of .94 on an authoritativeness indicator (calculated at the participant level) derived from the automated coding. It is therefore reasonable to believe that both individual and group measures might be derived from an automated coding of reply structures.

In this poster, we present a comparison of four heuristics in their preliminary stages of elaboration. Our comparison is based on individual measures of centrality, and group measures of amount and equality of collaborative participation, with a gold standard derived from the manual coding of a reply structure. Our baseline heuristic is derived from counts of participation. A first heuristic from the perspective of adapting asynchronous Group Informatics heuristics [13] to synchronous discussion and two further heuristics from the perspective of Negotiation coding [22] are presented below. We find that the baseline performs surprisingly well, surpassed/equaled only by the Negotiation heuristic. In comparison, the Group Informatics heuristic performs poorly. We discuss why this may be the case and lay the grounds for further exploration of such heuristics.

2. CONTENTS OF THE POSTER
In the poster, we will present each of the heuristics in detail, showing with visual examples the meaning of each of the heuristics we use and describe the reasoning behind each of the heuristics being expected to work. The gold standard is manually coded. The group informatics heuristic extends a heuristic which was originally designed for asynchronous discussion and takes media affordances for reading and replying, as well as time into
account. The negotiation heuristics are based on a socio-linguistic coding which expect certain sequences to exist in interaction, allowing reply structure data to be inferred in various ways.

Based on these heuristics we create individual measures of participation/centrality and group measures of cohesiveness. For each heuristic, we calculate the r^2 coefficient between it and the gold standard, presented in Table 1. For the Degree Centrality, $n=42$, for Mean Degree Centrality and Coefficient of Variation, $n=14$.

Table 2. Correlation between gold standard and each heuristic

<table>
<thead>
<tr>
<th></th>
<th>Degree Centrality</th>
<th>Mean Degree Centrality</th>
<th>Coefficient of Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn Counts</td>
<td>0.85</td>
<td>0.94</td>
<td>0.87</td>
</tr>
<tr>
<td>Group Informatics</td>
<td>0.13</td>
<td>0.22</td>
<td>0.43</td>
</tr>
<tr>
<td>Liberal Negotiation</td>
<td>0.74</td>
<td>0.88</td>
<td>0.54</td>
</tr>
<tr>
<td>Conservative Negotiation</td>
<td>0.96</td>
<td>0.25</td>
<td>0.38</td>
</tr>
</tbody>
</table>

We conclude by discussing the meaning of network analytics in small groups and the potential value in predicting network structures, even in these extreme cases.

3. EXPECTED INTERACTIONS WITH PARTICIPANTS

We hope to connect with participants who have non-structured discourse data from which network measures might be derived via heuristics and to share methods with which this might be achieved. We are also interested in the fact that turn counts were more effective than might have been expected and wonder whether this result would carry over to larger groups. These interactions will help us shape our thinking in what is currently a side-track of our research, in order to decide in what direction we should go to bring maturity to our work.

4. POSTER FORMAT

While this was originally a short paper and we have not yet taken the time to produce a paper, we expect graphics and very short text to be able to support 5 of the 6 sections of the poster (basic idea, 3 network heuristics, results), while the discussion will be more bullet-pointed.

5. REFERENCES

