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ABSTRACT 
We present the preliminary analysis of a study whose long term 
aim is to track IDE usage to identify novice-programmers in need 
of support. Our analysis focused on the activity of 24 dyads on a 3 
week assignment. We correlated frequencies of events such as use 
of code generation and of the debugger with assignment grades, 
final exam grades, and the difference in rankings within dyad on 
the final exam. Our results show several significant correlations. 
In particular, code generation and debugging are correlated with 
the final grade, and running in non-debug mode is correlated with 
differences in ranking. These results are encouraging as they show 
that it is possible to predict learning outcomes with simple 
frequency data and suggest more complex indicators could 
achieve robust prediction. 

Categories and Subject Descriptors 
K.3.2 [Computers and education]: Computer and information 
Science Education 

General Terms 
Measurement, Experimentation, Human Factors. 

Keywords 
Log data, Novice programmers, IDE usage 

1. INTRODUCTION 
Within the field of the Learning Sciences and for Technology 
Enhanced Learning in particular, the role of the tutor and their 
ability to monitor student activity has been considered crucial 
[16]. Several approaches have looked at ways of constructing 
high-level interaction indicators from  low-level log data in order 
to assist such tutor monitoring [12], [4]. For the teaching of 
programming, several studies have tracked programming activity 
at various levels in order to correlate it with learning outcomes 
and thus to suggest best practices to students or to identify “at-
risk” students [7], [10], [11]. 

In these studies, however, metrics have been mostly limited to 

compiling activity, resulting errors and standard software metrics 
such as lines of code, code complexity, amount of time spent, etc.  
and not to other more fine-grained activities, particularly those 
afforded by IDEs such as code-completion and generation. 
Furthermore, while there is a general consensus as to the benefits 
of pair programming [3], [8], [13] studies investigating such 
practices have not looked in detail at the programming activity 
itself. 

The field of Educational Data Mining has shown that it is possible 
to detect many behaviors from tracking data, such as gaming the 
system, off-task behavior and guessing in intelligent tutoring 
systems [2]. Such techniques have also been used to detect affect 
(boredom, frustration, etc.) through analysis of compilation 
behaviour. Other studies encourage us to think that low-level data 
[15] can be used in many instances to predict higher-level 
outcomes. 

In this paper, we examine novice programmers usage of the 
Eclipse IDE whilst working in pairs, and the relationship between 
this usage and learning outcomes as measured by their grades. We 
first explain how our educational context led us to conduct such as 
study and describe the data we chose to collect and the hypotheses 
we had concerning how this data might help to predict learning 
outcomes. We then present and discuss the results of a 
preliminary analysis which indicate: that several indicators related 
to use of the full possibilities of the IDE correlate significantly 
with learning outcomes; that the frequency indicators we 
calculated are a better predictor of the final exam grade than of the 
grade of the assignment the students were working on during the 
data collection; and that similar indicators both positively 
correlate with the final exam grade and with the within-dyad 
difference between grades on the final exam in spite of these two 
outcomes having a very low degree of correlation with each other. 

2. STUDY DESCRIPTION AND 
METHODOLOGY 
2.1 Context 
This study was conducted on a class of 124 first year students  at a 
French engineering school (a 3-year graduate-level school whose 
entry exam is usually prepared during the two years after high-
school). The salient features of this population are that they are 
extremely high achievers who are used to working hard but who 
are mostly not interested in computer science and programming. 
Unfortunately for them, a significant number of entry-level jobs 
obtained by graduates from this school feature programming 
responsibilities. Furthermore grades in Computer Science courses 
are not expected to be a discriminating factor in students’ overall 
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pass rate and, in contrast to the problems reported by many 
introductory programming courses for non CS majors, the dropout 
rate is very low (<1%). However, in our department, we are 
concerned over students’ lack of willingness to seek out help 
during lab work (with many TAs present) – making it difficult for 
us to help out the students who are in difficulty – and our 
difficulty in fostering the habit of regularly running the written 
code, in order to make sure that it works. We are also curious as to 
whether there are situations where our forcing students to work in 
pairs (due to lack of available hardware) has a negative impact on 
their individual learning.  

During the Object-Oriented Programming in Java and UML 
modeling course, students have four 90mn lab sessions (small 
assignments) and three 3h lab sessions (during which they work 
on a larger assignment) over the course of seven weeks. In all 
these sessions, students work in pairs. They are encouraged to 
continue working on their assignment outside of the lab. This is 
the students’ second programming course and their first contact 
with the Java programming language. It is also their first 
experience with using the Eclipse IDE (as opposed to the previous 
course where they edited with a text editor and compiled on the 
command line). 

Students are evaluated via a grade on the assignment, which they 
must turn in a week after the final lab session (same grade for 
both members of the pair), and via a grade on a final exam which 
tests knowledge about object-oriented programming in general, 
UML modeling and the java language. These grades are given out 
of 20 with 20 being the best grade and 10 being the pass grade. 
Half points may be awarded. Although grades on this scale may 
follow a normal distribution, it is customary to make the first 5-8 
points relatively easy to acquire, ramping up the difficulty slightly 
to reach a pass grade. The last 5 points are particularly hard to 
achieve (i.e. anything above 15 is considered an excellent grade). 

2.2 Indicators of Success in Programming 
Use of best practices such as PSP (Personal Software Process [9]) 
during programming courses has been shown to drastically 
improve the quality of code produced [11]. The metrics used to 
evaluate these practices are based on low-level indicators which 
describe the amount of effort invested in a program, its size and 
its shortcomings. Effort can be evaluated through the amount of 
time spent on each file coding and/or browsing. 

The prescriptive approach of PSP can be contrasted with various 
descriptive approaches, in particular in the observation of novice 
programmers (which may be more appropriate in this case as we 
can hardly expect novice programmers to better understand 
programming simply by encouraging them to copy the best 
practices of expert programmers). Several studies have shown that 
the persistence of compilation errors from one compilation 
instance to the next can be positively correlated with failure [10] 
and with poor scores on midterms [18]. 

Further work has confirmed these results and indicates that 
working in short multiple sessions is also beneficial to the final 
grade [7]. It also adds that time spent on a task is not correlated 
with the grade: students can spend little time through boredom or 
because the task is too easy; students can spend a lot of time 
because of perfectionism or because of multiple successive 
failures. They further note that students overestimate their 
compilation frequency, the quality of testing which their code has 

undergone and the proper breaking up of their code into modules. 
Other studies have confirmed these findings and show that 
beginning work early is also a strong predictor of assignment 
grade [6]. 

2.3 Further hypothetical indicators 
We can complete these indicators by further hypothetical 
indicators from our own teaching experience which we expect to 
be correlated with grades : respect of naming conventions, using 
the capabilities afforded by the IDE (browsing, automatic 
indentation, refactoring, suggestions for correcting compilation 
errors), and frequency of execution (i.e. testing). As compiling is 
automatic in the Eclipse IDE, the EQ (Error Quotient) metric 
described by [10] cannot be reproduced but may be simulated by 
the amount of time taken to fix a compilation error. 

As one of our long-term goals would be to automatically detect 
“at risk” dyads, we chose to forego collecting the kinds of verbal 
and gesture data used in other studies (e.g, [17], [14]). However, 
some studies [15] have shown encouraging results with regard to 
analyzing quality of collaboration based on low-level data (eye-
tracking and presence/absence of speech over time). These results 
suggest that we might get some indication of the nature of the 
within-dyad collaboration through mouse activity (which can be 
used for deictic gestures) along with moving from one tab to 
another (changing source file), which could indicate potential 
losses of alignment and agreement [1] within the dyad (in spite of 
having no indication as to which member of the dyad is the author 
of this activity). 

2.4 Data Collection and Preparation 
Several tools have been proposed to collect data on programming 
activity [7], [11]. We chose HackyStat [11] because of its 
integration with the Eclipse IDE and the possibility of extending it 
with new captors. We added functionality to capture some mouse 
activity, testing activity (adding capture of run mode to the 
existing debug mode), use of code generation functionalities 
(auto-complete, error correction), and use of the information about 
errors (quick fix, which gives additional info about compile errors 
and suggests ways to correct them). 

This resulted in the following event types and subtypes being 
captured: 

• File edition 

o Open 

o Close 

o Save 

o Edit (triggered by a pause in editing) 

o Code generation (auto-complete, etc.) 

o Program unit creation (when a new class or 
method is defined) 

• Appearance of a new compilation error 

• Use of the quick fixes interface to see suggestions 

• Testing and debugging 

o Run 



o Run in debug mode 

o Set/unset breakpoint 

o Reach breakpoint 

o Step over/into 

• Hover (the mouse is pointed long enough for an 
information tool-tip to appear) 

Data and consent forms were collected for  60 student dyads, one 
monad and one triad. For each group, we also associated the grade 
on the assignment and the grades of the individuals making up the 
group. 

Surprisingly (based on the experience of previous years), a large 
proportion of students used their laptops rather than the computers 
provided in the labs, mainly because of confusion over how to 
move projects between computers in Eclipse (in spite of 
explanations). For the first week of the assignment, we have data 
for nearly all dyads. Over the course of the assignment this 
number decreases. Because we had not provided the Hackystat 
plugin for installation on personal laptops, we only have a 
complete data set (data collected over all 3 weeks) for 28 groups. 
While this is not necessarily a problem (as we do not intend to 
provide universal indicators for novice programmers but to 
identify indicators which are reusable for us in similar conditions 
in subsequent years), for reasons of data homogeneity and ease of 
analysis, we restricted the analysis presented in this paper to those 
28 groups. Of these, several groups worked in parallel on a laptop 
and on the lab computers, actually using the lab computers very 
little. We identified 3 groups whose editing activity was two 
standard deviations lower than that of the next least-active group. 
Their data was also not considered for this analysis, again for 
reasons of homogeneity as many statistical methods are not robust 
against outliers. 

Before proceeding further with the analysis, we compared the 
grades of the 25 remaining groups (24 dyads and 1 monad) 
against the grades of all 62 groups, summarized in Table 1. We 
can see that groups who did their lab work on the lab computers 
scored 1.6 points fewer on average on the assignment. The 
students who worked partly/entirely on their own computers 
during labs have a slightly wider spread on the exam grades, but 
these grades do not differ significantly. 

Table 1. Comparison of grades between the whole population 
and those for whom we have a complete data set 

 128 students / 
62 groups 

49 students / 
25 groups 

Mean 13.56 11.98 Assignment 
grade 
(dyad) Std dev. 3.35 3.97 

Mean 10.35 10.21 Exam grade 
(individual) Std dev. 3.28 2.97 

 

For each of these 25 groups, frequencies for each sub-type (or 
type in absence of subtype) were computed. These frequencies 
were correlated with the average, lower and higher exam grade for 
each group (Average Grade, Min Grade and Max Grade), with the 

Assignment Grade for each group, and, where applicable, with the 
difference in within-dyad grade on the exam. 

We were unable to easily compute values regarding persistence of 
compilation errors over time as the captor only provides the 
appearance of compilation errors and does not (as we had 
assumed) record their resolution. 

3. RESULTS 
Because normality cannot be assumed, either for the frequencies, 
or for the grades, the Spearman Rank Correlation test was used. 
For the same reason, the difference in grades on the exam was 
measured by the difference in rank. Because of ties, the p-values 
for the test are not the exact values, but are estimated. In Table 2, 
we report the main results for correlation with between 
frequencies and grade outcomes, showing only significant values 
(*p<0.05, **p<0.01, ***p<0.001). 

Table 2. Correlation between frequencies and grade outcomes 
(non-significant values are not reported) 

 Assignm
ent grade 

Average 
grade 

Max 
grade 

Min 
grade 

Rank 
difference 

Save   0.517**  0.434* 

Edit   0.435*  0.465* 

Code 
Generation  0.623** 0.79*** 0.44* 0.448* 

Change 
Tab 0.486*  0.45*   

Normal 
Run   0.443*  0.6** 

Debug Run   0.47*   

Reach 
Breakpoint  0.45* 0.519**   

 

No significant correlations were found for the other event types, 
with the highest correlations for Mouse Hover and use of Quick 
Fixes being with Max grade at around ρ=0.3 (0.20<p<0.25) and 
the lowest being with Rank difference at around ρ=0.1 (p>0.75). 
The various debug events followed their Normal and Debug run 
counterparts with slight correlations (0.1<p<0.2) with the exam 
grade values and the Rank difference. Open, Close, Compilation 
Errors and Program Unit Creation provided universally low 
correlations (p>0.5). The number of compilation errors has 
particularly low correlation 

4. DISCUSSION 
4.1 Average grade 
The highest levels of significance are found in the correlations 
with exam grades. This would seem to indicate that certain uses of 
the IDE, in particular use of code generation and having 
breakpoints placed in such a way that they get triggered, are either 
indicators of good understanding or lead to an improved 
understanding of programming concepts. This is most easily 
explained for breakpoints, since placing them well is both the 
easiest way to follow unexpected code execution and a strong sign 
that students understand where the problems in their code arise. 



The correlation with code generation might perhaps be best 
explained as an indication that students understand the situations 
in which Eclipse knows to generate code and thus that they have 
sufficient understanding of the Java programming language to 
trust in the code generated by Eclipse.  

4.2 Assignment grade 
It seems almost paradoxical that data collected on fulfilling a 
given assignment should be better correlated with the grade on a 
subsequent exam than on the grade of the assignment itself. This 
is less surprising when we consider that a perfectly correct 
program might not have the functionality required for a good 
assignment grade. Furthermore, as the students had a week after 
the final lab to turn in their assignment, it may be that we are 
missing the data of the “sprint” to bring the assignment up to full 
functionality. 

Transitioning from one tab to another is the only factor which 
correlates with the assignment grade. This may be explained by 
two hypotheses: first, the assignment suggests that students should 
proceed by related functionalities, performing changes through the 
call tree, frequently moving from one Java class to another; 
second, a frequent behavior of TAs, when assisting students, is to 
move through all the files (and their parent tabs) to assess the 
current state of the program. 

4.3 Max and Min grades and Rank difference 
The hypothesis that, under certain conditions, one member of the 
dyad might benefit more than the other seems to hold out as 
several other activities associated with “normal” use of the IDE 
(saving, editing, testing the program) are correlated with the grade 
of the better performing student of the dyad and with the 
difference in rank on the exam. 

As we do not give any instructions on how work should be 
distributed within the dyads, a likely hypothesis to explain this is 
that one student is a more frequent “typist” and that all these 
activities lead to loss of alignment [1], i.e. their respective 
understandings of the problem and its solution do not evolve 
jointly, as one student speeds ahead before the other can 
understand what he is doing. Again, the causation could go either 
way (or both): students with a good understanding may use the 
IDE more and students who use the IDE a lot may gain better 
understanding.  

A similar hypothesis would explain why running the application 
in debug mode and reaching breakpoints are associated with a 
higher maximum grade, but not with difference in rank, whilst 
running the application in non-debug mode is associated with 
both: debugging slows things down, allowing alignment to be 
maintained or re-established. Indeed, testing the program in non-
debug mode is the most significant predictor for rank difference 
and the pairing is the third most significant correlation overall. 

Only code generation is significantly correlated with average, 
maximum and minimum grade. Surprisingly, however, it is also 
correlated with rank difference. Our first hypothesis to explain 
this was that high grades (min, max and average) would correlate 
with rank difference and thus that factors associated with one 
would necessarily be associated with the other. While this is 
slightly case for the min (p=0.06) and the max (p=0.17) – a self 
fulfilling result as dyads where one student has an extreme grades 
are more likely to see a high rank difference, assuming a 

distribution centered around the mean – it is emphatically not the 
case for the average (ρ=0.09, p=0.7). While we cannot rule out 
this hypothesis, it seems likely that, given the variety of kinds of 
code generation (automatic brackets, imports, refactoring, error 
correction, auto-completion, etc.), a closer look might reveal some 
kinds of code generation to be correlated with high grades and 
others with high rank differences. In particular, some kinds of 
code generation allow “silent” insertion of code of “minor” 
importance to understanding, such as imports, and could 
contribute to preservation of alignment. 

Another surprising result is that, although we had expected tab 
changes to cause loss of alignment, they are in fact correlated with 
maximum grade, but not with rank difference. Maybe further 
investigation into the data will help us explain this – possibly, as 
suggested above, this is related to TA activity. 

Some of the effects found on the maximum grade (particularly 
those related to debugging) were also present on average and 
minimum grades, but at non-significant levels of correlation, 
indicating that, under certain conditions such as pairing students 
by ability [3] or following a “change role every 15mn” protocol 
[13], a) the difference in rank might be diminished and b) using 
the full functionality of an IDE in pairs for learning to program 
might be beneficial and lead to an increase in understanding for 
both students. 

4.4 Other event types 
Several of the events we collected showed no significant 
correlation with the final grades. 
It is hardly surprising that opening and closing files showed no 
correlation: indeed, it would be hard to explain why this would be 
true. 
Mouse activity was the most far fetched of our indicators. 
Although the chosen hover activity did not produce any 
meaningful results, the fact that others hope that mouse activity 
may be an indicator of affect [17] suggests that we should not give 
up straight away on this type of event. 

As a surprise to us, the number of compilation errors is very 
poorly correlated with grades. Our unexpected inability to 
measure how soon errors are corrected has prevented us from 
exploring the matter further and finding the results the state of the 
art lead us to expect.  

The poor correlations for the use of quick fixes is disappointing, 
but this metric and mouse hover are among the strongest 
differentiators between differences in rank and grades and might 
thus be associated with other events (e.g compile error, quick fix, 
code generation, in rapid succession) to create robust predictors of 
poor grades or high within-dyad differences. 

5. FURTHER WORK 
The analysis presented in this paper is a first step towards our goal 
of being able to identify “at risk” students as early as possible, 
based on their activity. We plan to construct robust indicators 
based on these encouraging preliminary results and to test them on 
the data for week one (which has data for nearly all the groups). 

As shown in Figure 1, it might be possible to construct predictors 
based on the statistics we currently have alone. Indeed, placing a 
threshold on the code generation metric at 350 events would yield 
58% recall/100% precision and a threshold at 460 events would 



yield 100% recall/75% precision. However, we believe that 
examining how events unfold over time and establishing a more 
detailed hierarchy of event categories will produce even better 
results.  

We therefore plan to use exploratory sequential data analysis tools 
such as Tatiana [5] to discover the patterns in dyads identified as 
being typical (e.g. particularly successful groups, particularly 
unsuccessful groups or groups for which the indicators we have 
established so far are particularly poor). 

 
Figure 1. Plot of number of instances of code generation 

against average grade for each dyad. 
For the purposes of detection of “at risk” students, causation is not 
an issue. However, the question arises with regard to how best to 
intervene in order to help these students. Aside from extra 
instruction or explanations, it may be possible that encouraging 
students to follow certain potential best practices (debugging, 
following the call tree when writing code, etc.) would be 
beneficial. Further studies must be carried out to validate whether 
our findings do in fact give hints as to best practices for using an 
IDE in a learning situation and whether following these practices 
leads to better learning. 

Finally, correlation between these indicators and detailed grading 
information, both on the assignment and the final exam, may 
allow us to predict more precisely which competencies students 
lack. 

6.  CONCLUSION 
In this paper, we presented the results of preliminary analysis on a 
study designed to correlate novice-programmer pair-programming 
activities using the Eclipse IDE with their grades on the 
assignment, in the final exam and with the within-dyad difference 
in rank on the final exam. Our long term goal is to use such data 
to identify and assist “at risk” students. Our results show that the 
use of code generation functionalities and coming across 
breakpoints while debugging are both significantly correlated with 
the final grade. Frequencies of editing, saving, code generation 
and testing the program in non-debug mode are significantly 
correlated with within-dyad rank differences on the final exam. 
Only the frequency of transition from one tab to another proved to 
be significantly correlated with the grade on the assignment the 
students were working on when the data was collected. 

These results are highly encouraging as they suggest that it will be 
possible to develop robust indicators of students who are likely to 
perform poorly and of dyads who are likely to have large 
differences in rank on the final exam. They also show the value of 
collecting data in more detail than information about compiling, 
particularly as our results are strong predictors of performance on 
the exam, indicating that they may help us access student 
understanding.  

Further avenues for study include a look at the sequentiality of 
events in order to identify patterns which increase the 
distinguishing power of the already identified predictors, 
determining how little data is necessary to predict learning 
outcomes (earlier detection leads to earlier intervention), 
answering the question of how best to support “at risk” students, 
and determining whether the factors we have identified so far 
could form the basis of best practices for learning to program with 
an IDE. 
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