
Which Aspects of Novice Programmers’ Usage of an IDE
Predict Learning Outcomes?

Gregory Dyke
Ecole des Mines de Saint-Etienne,

France
158, Cours Fauriel

42023 Saint-Etienne CEDEX
+33 6 50 56 30 99

gregdyke@gmail.com

ABSTRACT
We present the preliminary analysis of a study whose long term
aim is to track IDE usage to identify novice-programmers in need
of support. Our analysis focused on the activity of 24 dyads on a 3
week assignment. We correlated frequencies of events such as use
of code generation and of the debugger with assignment grades,
final exam grades, and the difference in rankings within dyad on
the final exam. Our results show several significant correlations.
In particular, code generation and debugging are correlated with
the final grade, and running in non-debug mode is correlated with
differences in ranking. These results are encouraging as they show
that it is possible to predict learning outcomes with simple
frequency data and suggest more complex indicators could
achieve robust prediction.

Categories and Subject Descriptors
K.3.2 [Computers and education]: Computer and information
Science Education

General Terms
Measurement, Experimentation, Human Factors.

Keywords
Log data, Novice programmers, IDE usage

1. INTRODUCTION
Within the field of the Learning Sciences and for Technology
Enhanced Learning in particular, the role of the tutor and their
ability to monitor student activity has been considered crucial
[16]. Several approaches have looked at ways of constructing
high-level interaction indicators from low-level log data in order
to assist such tutor monitoring [12], [4]. For the teaching of
programming, several studies have tracked programming activity
at various levels in order to correlate it with learning outcomes
and thus to suggest best practices to students or to identify “at-
risk” students [7], [10], [11].

In these studies, however, metrics have been mostly limited to

compiling activity, resulting errors and standard software metrics
such as lines of code, code complexity, amount of time spent, etc.
and not to other more fine-grained activities, particularly those
afforded by IDEs such as code-completion and generation.
Furthermore, while there is a general consensus as to the benefits
of pair programming [3], [8], [13] studies investigating such
practices have not looked in detail at the programming activity
itself.

The field of Educational Data Mining has shown that it is possible
to detect many behaviors from tracking data, such as gaming the
system, off-task behavior and guessing in intelligent tutoring
systems [2]. Such techniques have also been used to detect affect
(boredom, frustration, etc.) through analysis of compilation
behaviour. Other studies encourage us to think that low-level data
[15] can be used in many instances to predict higher-level
outcomes.

In this paper, we examine novice programmers usage of the
Eclipse IDE whilst working in pairs, and the relationship between
this usage and learning outcomes as measured by their grades. We
first explain how our educational context led us to conduct such as
study and describe the data we chose to collect and the hypotheses
we had concerning how this data might help to predict learning
outcomes. We then present and discuss the results of a
preliminary analysis which indicate: that several indicators related
to use of the full possibilities of the IDE correlate significantly
with learning outcomes; that the frequency indicators we
calculated are a better predictor of the final exam grade than of the
grade of the assignment the students were working on during the
data collection; and that similar indicators both positively
correlate with the final exam grade and with the within-dyad
difference between grades on the final exam in spite of these two
outcomes having a very low degree of correlation with each other.

2. STUDY DESCRIPTION AND
METHODOLOGY
2.1 Context
This study was conducted on a class of 124 first year students at a
French engineering school (a 3-year graduate-level school whose
entry exam is usually prepared during the two years after high-
school). The salient features of this population are that they are
extremely high achievers who are used to working hard but who
are mostly not interested in computer science and programming.
Unfortunately for them, a significant number of entry-level jobs
obtained by graduates from this school feature programming
responsibilities. Furthermore grades in Computer Science courses
are not expected to be a discriminating factor in students’ overall

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

pass rate and, in contrast to the problems reported by many
introductory programming courses for non CS majors, the dropout
rate is very low (<1%). However, in our department, we are
concerned over students’ lack of willingness to seek out help
during lab work (with many TAs present) – making it difficult for
us to help out the students who are in difficulty – and our
difficulty in fostering the habit of regularly running the written
code, in order to make sure that it works. We are also curious as to
whether there are situations where our forcing students to work in
pairs (due to lack of available hardware) has a negative impact on
their individual learning.

During the Object-Oriented Programming in Java and UML
modeling course, students have four 90mn lab sessions (small
assignments) and three 3h lab sessions (during which they work
on a larger assignment) over the course of seven weeks. In all
these sessions, students work in pairs. They are encouraged to
continue working on their assignment outside of the lab. This is
the students’ second programming course and their first contact
with the Java programming language. It is also their first
experience with using the Eclipse IDE (as opposed to the previous
course where they edited with a text editor and compiled on the
command line).

Students are evaluated via a grade on the assignment, which they
must turn in a week after the final lab session (same grade for
both members of the pair), and via a grade on a final exam which
tests knowledge about object-oriented programming in general,
UML modeling and the java language. These grades are given out
of 20 with 20 being the best grade and 10 being the pass grade.
Half points may be awarded. Although grades on this scale may
follow a normal distribution, it is customary to make the first 5-8
points relatively easy to acquire, ramping up the difficulty slightly
to reach a pass grade. The last 5 points are particularly hard to
achieve (i.e. anything above 15 is considered an excellent grade).

2.2 Indicators of Success in Programming
Use of best practices such as PSP (Personal Software Process [9])
during programming courses has been shown to drastically
improve the quality of code produced [11]. The metrics used to
evaluate these practices are based on low-level indicators which
describe the amount of effort invested in a program, its size and
its shortcomings. Effort can be evaluated through the amount of
time spent on each file coding and/or browsing.

The prescriptive approach of PSP can be contrasted with various
descriptive approaches, in particular in the observation of novice
programmers (which may be more appropriate in this case as we
can hardly expect novice programmers to better understand
programming simply by encouraging them to copy the best
practices of expert programmers). Several studies have shown that
the persistence of compilation errors from one compilation
instance to the next can be positively correlated with failure [10]
and with poor scores on midterms [18].

Further work has confirmed these results and indicates that
working in short multiple sessions is also beneficial to the final
grade [7]. It also adds that time spent on a task is not correlated
with the grade: students can spend little time through boredom or
because the task is too easy; students can spend a lot of time
because of perfectionism or because of multiple successive
failures. They further note that students overestimate their
compilation frequency, the quality of testing which their code has

undergone and the proper breaking up of their code into modules.
Other studies have confirmed these findings and show that
beginning work early is also a strong predictor of assignment
grade [6].

2.3 Further hypothetical indicators
We can complete these indicators by further hypothetical
indicators from our own teaching experience which we expect to
be correlated with grades : respect of naming conventions, using
the capabilities afforded by the IDE (browsing, automatic
indentation, refactoring, suggestions for correcting compilation
errors), and frequency of execution (i.e. testing). As compiling is
automatic in the Eclipse IDE, the EQ (Error Quotient) metric
described by [10] cannot be reproduced but may be simulated by
the amount of time taken to fix a compilation error.

As one of our long-term goals would be to automatically detect
“at risk” dyads, we chose to forego collecting the kinds of verbal
and gesture data used in other studies (e.g, [17], [14]). However,
some studies [15] have shown encouraging results with regard to
analyzing quality of collaboration based on low-level data (eye-
tracking and presence/absence of speech over time). These results
suggest that we might get some indication of the nature of the
within-dyad collaboration through mouse activity (which can be
used for deictic gestures) along with moving from one tab to
another (changing source file), which could indicate potential
losses of alignment and agreement [1] within the dyad (in spite of
having no indication as to which member of the dyad is the author
of this activity).

2.4 Data Collection and Preparation
Several tools have been proposed to collect data on programming
activity [7], [11]. We chose HackyStat [11] because of its
integration with the Eclipse IDE and the possibility of extending it
with new captors. We added functionality to capture some mouse
activity, testing activity (adding capture of run mode to the
existing debug mode), use of code generation functionalities
(auto-complete, error correction), and use of the information about
errors (quick fix, which gives additional info about compile errors
and suggests ways to correct them).

This resulted in the following event types and subtypes being
captured:

• File edition

o Open

o Close

o Save

o Edit (triggered by a pause in editing)

o Code generation (auto-complete, etc.)

o Program unit creation (when a new class or
method is defined)

• Appearance of a new compilation error

• Use of the quick fixes interface to see suggestions

• Testing and debugging

o Run

o Run in debug mode

o Set/unset breakpoint

o Reach breakpoint

o Step over/into

• Hover (the mouse is pointed long enough for an
information tool-tip to appear)

Data and consent forms were collected for 60 student dyads, one
monad and one triad. For each group, we also associated the grade
on the assignment and the grades of the individuals making up the
group.

Surprisingly (based on the experience of previous years), a large
proportion of students used their laptops rather than the computers
provided in the labs, mainly because of confusion over how to
move projects between computers in Eclipse (in spite of
explanations). For the first week of the assignment, we have data
for nearly all dyads. Over the course of the assignment this
number decreases. Because we had not provided the Hackystat
plugin for installation on personal laptops, we only have a
complete data set (data collected over all 3 weeks) for 28 groups.
While this is not necessarily a problem (as we do not intend to
provide universal indicators for novice programmers but to
identify indicators which are reusable for us in similar conditions
in subsequent years), for reasons of data homogeneity and ease of
analysis, we restricted the analysis presented in this paper to those
28 groups. Of these, several groups worked in parallel on a laptop
and on the lab computers, actually using the lab computers very
little. We identified 3 groups whose editing activity was two
standard deviations lower than that of the next least-active group.
Their data was also not considered for this analysis, again for
reasons of homogeneity as many statistical methods are not robust
against outliers.

Before proceeding further with the analysis, we compared the
grades of the 25 remaining groups (24 dyads and 1 monad)
against the grades of all 62 groups, summarized in Table 1. We
can see that groups who did their lab work on the lab computers
scored 1.6 points fewer on average on the assignment. The
students who worked partly/entirely on their own computers
during labs have a slightly wider spread on the exam grades, but
these grades do not differ significantly.

Table 1. Comparison of grades between the whole population
and those for whom we have a complete data set

 128 students /
62 groups

49 students /
25 groups

Mean 13.56 11.98 Assignment
grade
(dyad) Std dev. 3.35 3.97

Mean 10.35 10.21 Exam grade
(individual) Std dev. 3.28 2.97

For each of these 25 groups, frequencies for each sub-type (or
type in absence of subtype) were computed. These frequencies
were correlated with the average, lower and higher exam grade for
each group (Average Grade, Min Grade and Max Grade), with the

Assignment Grade for each group, and, where applicable, with the
difference in within-dyad grade on the exam.

We were unable to easily compute values regarding persistence of
compilation errors over time as the captor only provides the
appearance of compilation errors and does not (as we had
assumed) record their resolution.

3. RESULTS
Because normality cannot be assumed, either for the frequencies,
or for the grades, the Spearman Rank Correlation test was used.
For the same reason, the difference in grades on the exam was
measured by the difference in rank. Because of ties, the p-values
for the test are not the exact values, but are estimated. In Table 2,
we report the main results for correlation with between
frequencies and grade outcomes, showing only significant values
(*p<0.05, **p<0.01, ***p<0.001).

Table 2. Correlation between frequencies and grade outcomes
(non-significant values are not reported)

 Assignm
ent grade

Average
grade

Max
grade

Min
grade

Rank
difference

Save 0.517** 0.434*

Edit 0.435* 0.465*

Code
Generation 0.623** 0.79*** 0.44* 0.448*

Change
Tab 0.486* 0.45*

Normal
Run 0.443* 0.6**

Debug Run 0.47*

Reach
Breakpoint 0.45* 0.519**

No significant correlations were found for the other event types,
with the highest correlations for Mouse Hover and use of Quick
Fixes being with Max grade at around ρ=0.3 (0.20<p<0.25) and
the lowest being with Rank difference at around ρ=0.1 (p>0.75).
The various debug events followed their Normal and Debug run
counterparts with slight correlations (0.1<p<0.2) with the exam
grade values and the Rank difference. Open, Close, Compilation
Errors and Program Unit Creation provided universally low
correlations (p>0.5). The number of compilation errors has
particularly low correlation

4. DISCUSSION
4.1 Average grade
The highest levels of significance are found in the correlations
with exam grades. This would seem to indicate that certain uses of
the IDE, in particular use of code generation and having
breakpoints placed in such a way that they get triggered, are either
indicators of good understanding or lead to an improved
understanding of programming concepts. This is most easily
explained for breakpoints, since placing them well is both the
easiest way to follow unexpected code execution and a strong sign
that students understand where the problems in their code arise.

The correlation with code generation might perhaps be best
explained as an indication that students understand the situations
in which Eclipse knows to generate code and thus that they have
sufficient understanding of the Java programming language to
trust in the code generated by Eclipse.

4.2 Assignment grade
It seems almost paradoxical that data collected on fulfilling a
given assignment should be better correlated with the grade on a
subsequent exam than on the grade of the assignment itself. This
is less surprising when we consider that a perfectly correct
program might not have the functionality required for a good
assignment grade. Furthermore, as the students had a week after
the final lab to turn in their assignment, it may be that we are
missing the data of the “sprint” to bring the assignment up to full
functionality.

Transitioning from one tab to another is the only factor which
correlates with the assignment grade. This may be explained by
two hypotheses: first, the assignment suggests that students should
proceed by related functionalities, performing changes through the
call tree, frequently moving from one Java class to another;
second, a frequent behavior of TAs, when assisting students, is to
move through all the files (and their parent tabs) to assess the
current state of the program.

4.3 Max and Min grades and Rank difference
The hypothesis that, under certain conditions, one member of the
dyad might benefit more than the other seems to hold out as
several other activities associated with “normal” use of the IDE
(saving, editing, testing the program) are correlated with the grade
of the better performing student of the dyad and with the
difference in rank on the exam.

As we do not give any instructions on how work should be
distributed within the dyads, a likely hypothesis to explain this is
that one student is a more frequent “typist” and that all these
activities lead to loss of alignment [1], i.e. their respective
understandings of the problem and its solution do not evolve
jointly, as one student speeds ahead before the other can
understand what he is doing. Again, the causation could go either
way (or both): students with a good understanding may use the
IDE more and students who use the IDE a lot may gain better
understanding.

A similar hypothesis would explain why running the application
in debug mode and reaching breakpoints are associated with a
higher maximum grade, but not with difference in rank, whilst
running the application in non-debug mode is associated with
both: debugging slows things down, allowing alignment to be
maintained or re-established. Indeed, testing the program in non-
debug mode is the most significant predictor for rank difference
and the pairing is the third most significant correlation overall.

Only code generation is significantly correlated with average,
maximum and minimum grade. Surprisingly, however, it is also
correlated with rank difference. Our first hypothesis to explain
this was that high grades (min, max and average) would correlate
with rank difference and thus that factors associated with one
would necessarily be associated with the other. While this is
slightly case for the min (p=0.06) and the max (p=0.17) – a self
fulfilling result as dyads where one student has an extreme grades
are more likely to see a high rank difference, assuming a

distribution centered around the mean – it is emphatically not the
case for the average (ρ=0.09, p=0.7). While we cannot rule out
this hypothesis, it seems likely that, given the variety of kinds of
code generation (automatic brackets, imports, refactoring, error
correction, auto-completion, etc.), a closer look might reveal some
kinds of code generation to be correlated with high grades and
others with high rank differences. In particular, some kinds of
code generation allow “silent” insertion of code of “minor”
importance to understanding, such as imports, and could
contribute to preservation of alignment.

Another surprising result is that, although we had expected tab
changes to cause loss of alignment, they are in fact correlated with
maximum grade, but not with rank difference. Maybe further
investigation into the data will help us explain this – possibly, as
suggested above, this is related to TA activity.

Some of the effects found on the maximum grade (particularly
those related to debugging) were also present on average and
minimum grades, but at non-significant levels of correlation,
indicating that, under certain conditions such as pairing students
by ability [3] or following a “change role every 15mn” protocol
[13], a) the difference in rank might be diminished and b) using
the full functionality of an IDE in pairs for learning to program
might be beneficial and lead to an increase in understanding for
both students.

4.4 Other event types
Several of the events we collected showed no significant
correlation with the final grades.
It is hardly surprising that opening and closing files showed no
correlation: indeed, it would be hard to explain why this would be
true.
Mouse activity was the most far fetched of our indicators.
Although the chosen hover activity did not produce any
meaningful results, the fact that others hope that mouse activity
may be an indicator of affect [17] suggests that we should not give
up straight away on this type of event.

As a surprise to us, the number of compilation errors is very
poorly correlated with grades. Our unexpected inability to
measure how soon errors are corrected has prevented us from
exploring the matter further and finding the results the state of the
art lead us to expect.

The poor correlations for the use of quick fixes is disappointing,
but this metric and mouse hover are among the strongest
differentiators between differences in rank and grades and might
thus be associated with other events (e.g compile error, quick fix,
code generation, in rapid succession) to create robust predictors of
poor grades or high within-dyad differences.

5. FURTHER WORK
The analysis presented in this paper is a first step towards our goal
of being able to identify “at risk” students as early as possible,
based on their activity. We plan to construct robust indicators
based on these encouraging preliminary results and to test them on
the data for week one (which has data for nearly all the groups).

As shown in Figure 1, it might be possible to construct predictors
based on the statistics we currently have alone. Indeed, placing a
threshold on the code generation metric at 350 events would yield
58% recall/100% precision and a threshold at 460 events would

yield 100% recall/75% precision. However, we believe that
examining how events unfold over time and establishing a more
detailed hierarchy of event categories will produce even better
results.

We therefore plan to use exploratory sequential data analysis tools
such as Tatiana [5] to discover the patterns in dyads identified as
being typical (e.g. particularly successful groups, particularly
unsuccessful groups or groups for which the indicators we have
established so far are particularly poor).

Figure 1. Plot of number of instances of code generation

against average grade for each dyad.
For the purposes of detection of “at risk” students, causation is not
an issue. However, the question arises with regard to how best to
intervene in order to help these students. Aside from extra
instruction or explanations, it may be possible that encouraging
students to follow certain potential best practices (debugging,
following the call tree when writing code, etc.) would be
beneficial. Further studies must be carried out to validate whether
our findings do in fact give hints as to best practices for using an
IDE in a learning situation and whether following these practices
leads to better learning.

Finally, correlation between these indicators and detailed grading
information, both on the assignment and the final exam, may
allow us to predict more precisely which competencies students
lack.

6. CONCLUSION
In this paper, we presented the results of preliminary analysis on a
study designed to correlate novice-programmer pair-programming
activities using the Eclipse IDE with their grades on the
assignment, in the final exam and with the within-dyad difference
in rank on the final exam. Our long term goal is to use such data
to identify and assist “at risk” students. Our results show that the
use of code generation functionalities and coming across
breakpoints while debugging are both significantly correlated with
the final grade. Frequencies of editing, saving, code generation
and testing the program in non-debug mode are significantly
correlated with within-dyad rank differences on the final exam.
Only the frequency of transition from one tab to another proved to
be significantly correlated with the grade on the assignment the
students were working on when the data was collected.

These results are highly encouraging as they suggest that it will be
possible to develop robust indicators of students who are likely to
perform poorly and of dyads who are likely to have large
differences in rank on the final exam. They also show the value of
collecting data in more detail than information about compiling,
particularly as our results are strong predictors of performance on
the exam, indicating that they may help us access student
understanding.

Further avenues for study include a look at the sequentiality of
events in order to identify patterns which increase the
distinguishing power of the already identified predictors,
determining how little data is necessary to predict learning
outcomes (earlier detection leads to earlier intervention),
answering the question of how best to support “at risk” students,
and determining whether the factors we have identified so far
could form the basis of best practices for learning to program with
an IDE.

7. ACKNOWLEDGMENTS
Our thanks to Gauthier Picard for allowing this study to be run in
his class and sharing detailed data regarding the grading, Adrien
Hery for assistance with data collection, and to all the students
who agreed to take part in this study.

8. REFERENCES
[1] Baker, M. 2002. Forms of cooperation in dyadic problem-

solving. In P. Salembier & T. H. Benchekron (Eds.),
Cooperation and complexity in sociotechnical systems (Vol.
16, pp. 587–620).

[2] Baker, R. S., Corbett, A. T., Koedinger, K. R., and Wagner,
A. Z. 2004. Off-task behavior in the cognitive tutor
classroom: when students "game the system". In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems (Vienna, Austria, April 24 - 29, 2004). CHI '04.
ACM, New York, NY, 383-390. DOI=
http://doi.acm.org/10.1145/985692.985741

[3] Braught, G., MacCormick, J., and Wahls, T. 2010. The
benefits of pairing by ability. In Proceedings of the 41st
ACM Technical Symposium on Computer Science Education
(Milwaukee, Wisconsin, USA, March 10 - 13, 2010).
SIGCSE '10. ACM, New York, NY, 249-253. DOI=
http://doi.acm.org/10.1145/1734263.1734348

[4] De Laat, M. F., M, C., and Wegerif, R. 2008. Facilitate the
Facilitator: Awareness Tools to Support the Moderator to
Facilitate Online Discussions for Networked Learning. In
Proceedings of the 6th International Conference on
Networked Learning (pp. 80–86). Halkidiki, Greece.

[5] Dyke, G., Lund, K., and Girardot, J.-J. 2009. Tatiana : an
environment to support the CSCL analysis process. CSCL
2009. Rhodes, Greece, 58–67.

[6] Edwards, S.H., Snyder, J., Pérez-Quiñones, M.A., Allevato,
A., Kim D., and Tretola, B., 2009. Comparing Effective and
Ineffective Behaviors of Student Programmers. ICER’09,
August 10–11, 2009, Berkeley, California, USA.

[7] Fenwick, J. B., Norris, C., Barry, F. E., Rountree, J., Spicer,
C. J., and Cheek, S. D. 2009. Another look at the behaviors
of novice programmers. SIGCSE '09. ACM, New York, NY,
296–300.

[8] Hanks, B., McDowell, C., Draper, D., and Krnjajic, M. 2004.
Program quality with pair programming in CS1. In
Proceedings of the 9th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education
(Leeds, UK, June 28-30, 2004). ITiCSE '04. ACM Press,
New York, NY, 176-180.

[9] Humphrey, W. S. 1995. A Discipline for Software
Engineering. Addison-Wesley.

[10] Jadud, M. 2005. A first look at novice compilation behaviour
using BlueJ. Computer Science Education, 15(1):25–40.

[11] Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C.,
Miglani, J., Zhen, S., and Doane, W. E. 2003. Beyond the
Personal Software Process: metrics collection and analysis
for the differently disciplined. In Proceedings of the 25th
international Conference on Software Engineering. IEEE
Computer Society, Washington, DC, 641–646.

[12] May, M., George, S., and Prévôt, P. 2008. A closer look at
tracking human and computer interactions in web-based
communications. International Journal of Interactive
Technology and Smart Education, 5(3): 170–188.

[13] McDowell, C., Werner, L., Bullock, H., and Fernald, J. 2002.
The effects of pair-programming on performance in an
introductory programming course. In Proceedings of the
33rd SIGCSE Technical Symposium on Computer Science
Education (Cincinnati, Kentucky, February 27 - March 03,

2002). SIGCSE '02. ACM, New York, NY, 38-42. DOI=
http://doi.acm.org/10.1145/563340.563353

[14] Murphy, L., Fitzgerald, S., Hanks, B., and McCauley, R.
2010. Pair debugging: a transactive discourse analysis. In
Proceedings of the Sixth international Workshop on
Computing Education Research (Aarhus, Denmark, August
09 - 10, 2010). ICER '10. ACM, New York, NY, 51-58.
DOI= http://doi.acm.org/10.1145/1839594.1839604

[15] Nüssli, M.-A., Jermann, P., Sangin, M,. and Dillenbourg, P.
2009. Collaboration and abstract representations: towards
predictive models based on raw speech and eye-tracking
data. CSCL 2009. Rhodes.

[16] Petrou, A. and Dimitrakopoulou, A. 2003. Is synchronous
computer mediated collaborative problem-solving "justified"
only when by distance? Teachers' point of views and
interventions with co-located groups, during every day class
activities. In Proceedings of the International Conference on
Computer Support for Collaborative Learning 2003.1-10.

[17] Rodrigo, M. T., Baker, R. S., Jadud, M. C., Amarra, A. M.,
Dy, T., et al. 2009. Affective and behavioral predictors of
novice programmer achievement. ITiCSE '09. Paris, France.
156-160.

[18] Tabanao, E., Rodrigo, M. M. T. and Jadud, M. 2008.
Identifying at-risk novice programmers through the analysis
of online protocols. Philippine Computing Society Congress
2008, (UP Diliman, Quezon City, February 23-24, 2008).

